Fuzzy and Rough Sets
Part II
Staal A. Vinterbo
Decision Systems Group
Brigham and Women’s Hospital,
Harvard Medical School
Overview

• Fuzzy sets
• Fuzzy logic and rules
• Rough sets and rules
• An example of a method for mining rough/fuzzy rules
• Uncertainty revisited
Crisp Sets

• A set with a characteristic function is called *crisp*

• Crisp sets are used to formally characterize a *concept*, e.g., even numbers

• Crisp sets have clear cut boundaries, hence do not reflect uncertainty about membership
Fuzzy Sets

• Zadeh (1965) introduced “Fuzzy Sets” where he replaced the characteristic function with membership

• \(\psi_S : U \rightarrow \{0,1\} \) is replaced by \(m_S : U \rightarrow [0,1] \)

• Membership is a generalization of characteristic function and gives a “degree of membership”

• Successful applications in control theoretic settings (appliances, gearbox)
Fuzzy Sets

• Example: Let S be the set of people of normal height
• Normality is clearly not a crisp concept
Crisp Characterizations of Fuzzy Sets

• Support in U
 $\text{Support}_U(S) = \{x \in U \mid m_S(x) > 0\}$

• Containment
 $A \subseteq B$ if and only if
 $m_A(x) \leq m_B(x)$ for all $x \in U$

• There are non-crisp versions of the above
Fuzzy Set Operations

- **Union**
 \[m_{A \cup B}(x) = \max(m_A(x), m_B(x)) \]
- **Intersection**
 \[m_{A \cap B}(x) = \min(m_A(x), m_B(x)) \]
- **Complementation**
 \[m_{U-A}(x) = 1 - m_A(x) \]
- **Note that other definitions exist too**
Fuzzy Memberships
Example

\[m_A(x) \quad m_B(x) \]
Fuzzy Union Example

\[m_{A \cup B}(x) \]

\[m_A(x) \]

\[m_B(x) \]
Fuzzy Intersection Example
Fuzzy Complementation Example

\[m_{U-A}(x) \]

\[m_A(x) \]

\[m_{U-A}(x) \]
Fuzzy Relations

• The fuzzy relation R between Sets X and Y is a fuzzy set in the Cartesian product $X \times Y$.

• $m_R: X \times Y \rightarrow [0,1]$ gives the degree to which x and y are related to each other in R.
Composition of Relations

• Two fuzzy relations R in $X \times Y$ and S in $Y \times Z$ can be composed into $R \circ S$ in $X \times Z$ as

\[
m_{R \circ S}(x,z) = \max_{y \in Y}[\min[m_R(x,y), m_S(x,y)]]
\]
Composition Example

R

S

R \circ S

\begin{figure}
\centering
\begin{tikzpicture}
\node (a) at (0,0) {0.3};
\node (b) at (1,0) {0.8};
\node (c) at (1.5,0) {1};
\node (d) at (2,0) {0.9};
\node (e) at (3,0) {0.7};
\node (f) at (4,0) {0.4};
\node (g) at (4.5,0) {0.5};
\node (h) at (5,0) {0.9};
\node (i) at (0,1) {0.7};
\node (j) at (1,1) {0.6};
\node (k) at (1.5,1) {0.4};
\node (l) at (2,1) {1};
\node (m) at (3,1) {0.7};
\node (n) at (4,1) {0.5};
\node (o) at (4.5,1) {0.9};
\node (p) at (2.5,2) {0.5};
\node (q) at (2.5,1) {0.9};
\node (r) at (2.5,0) {0.7};
\node (s) at (2.5,-1) {0.7};
\draw [->] (a) -- (b);
\draw [->] (a) -- (c);
\draw [->] (a) -- (d);
\draw [->] (a) -- (e);
\draw [->] (b) -- (c);
\draw [->] (b) -- (d);
\draw [->] (b) -- (e);
\draw [->] (b) -- (f);
\draw [->] (c) -- (d);
\draw [->] (c) -- (e);
\draw [->] (c) -- (f);
\draw [->] (c) -- (g);
\draw [->] (d) -- (e);
\draw [->] (d) -- (f);
\draw [->] (d) -- (g);
\draw [->] (d) -- (h);
\draw [->] (e) -- (f);
\draw [->] (e) -- (g);
\draw [->] (e) -- (h);
\draw [->] (f) -- (g);
\draw [->] (f) -- (h);
\draw [->] (g) -- (h);
\draw [->] (i) -- (j);
\draw [->] (i) -- (k);
\draw [->] (i) -- (l);
\draw [->] (i) -- (m);
\draw [->] (j) -- (k);
\draw [->] (j) -- (l);
\draw [->] (j) -- (m);
\draw [->] (j) -- (n);
\draw [->] (k) -- (l);
\draw [->] (k) -- (m);
\draw [->] (k) -- (n);
\draw [->] (k) -- (o);
\draw [->] (l) -- (m);
\draw [->] (l) -- (n);
\draw [->] (l) -- (o);
\draw [->] (m) -- (n);
\draw [->] (m) -- (o);
\draw [->] (m) -- (p);
\draw [->] (n) -- (o);
\draw [->] (n) -- (p);
\draw [->] (n) -- (q);
\draw [->] (o) -- (p);
\draw [->] (o) -- (q);
\draw [->] (o) -- (r);
\draw [->] (p) -- (q);
\draw [->] (p) -- (r);
\draw [->] (p) -- (s);
\draw [->] (q) -- (r);
\draw [->] (q) -- (s);
\draw [->] (q) -- (t);
\draw [->] (r) -- (s);
\draw [->] (r) -- (t);
\draw [->] (s) -- (t);
\end{tikzpicture}
\caption{Composition Example}
\end{figure}
Probabilities of Fuzzy Events

• “Probability of cold weather tomorrow”

• $U = \{x_1, x_2, \ldots, x_n\}$, p is a probability density, A is a fuzzy set (event) in U

$$P(A) = \sum_{i=1}^{n} m_A(x_i) p(x_i)$$
Defuzzyfication

• Finding a single representative for a fuzzy set A in $U = \{x_i | i \in \{1, \ldots, n\}\}$
• $\text{Max: } x \text{ in } U \text{ such that } m_A(x) \text{ is maximal}$
• Center of gravity:

$$\frac{\sum_{i=1}^{n} x_i m_A(x_i)}{\sum_{i=1}^{n} m_A(x_i)}$$
Alpha Cuts

- A is a fuzzy set in U
- $A_\alpha = \{x \mid m_A(x) \geq \alpha \}$ is the α-cut of A in U
- *Strong* α-cut is $A_\alpha = \{x \mid m_A(x) > \alpha \}$
- Alpha cuts are crisp sets
Fuzzy Logic

• Different views
 – Foundation for reasoning based on uncertain statements
 – Foundation for reasoning based on uncertain statements where fuzzy set theoretic tools are used (original Zadeh)
 – As a multivalued logic with operations chosen in a special way that has some fuzzy interpretation
Fuzzy Logic

• Generalization of proposition over a set
• Let $\chi_S : U \rightarrow \{0,1\}$ denote the characteristic function of the set S
• Recall that in “crisp” logic
 $I(p(x)) = p(x) = \chi_{T(p)}(x)$
where p is a proposition and $T(p)$ is the corresponding truth set
Fuzzy Logic

- We extend the proposition $p : U \rightarrow \{0,1\}$ to be a fuzzy membership $p : U \rightarrow [0,1]$
- The fuzzy set associated with p corresponds to the truth set $T(p)$ and $p(x)$ is the degree of truth of p for x
- We extend the interpretation of logical formulae analogously to the crisp case
Fuzzy Logic Semantics

• Basic operations:
 - $I(p(x)) = p(x)$
 - $I(\alpha \lor \beta) = \max(I(\alpha), I(\beta))$
 - $I(\alpha \land \beta) = \min(I(\alpha), I(\beta))$
 - $I(\sim \alpha) = 1 - I(\alpha)$
Fuzzy Logic Semantics

• Implication:
 – Kleene-Dienes
 \[I(\alpha \rightarrow \beta) = \max(I(\sim\alpha), I(\beta)) \]

• Dubois and Prade (1992) analyze other definitions of Implications
 – Zadeh
 \[I(\alpha \rightarrow \beta) = \max(I(\sim\alpha), \min(I(\alpha), I(\beta))) \]
Fuzzy Rules

- "If \(x \) in \(A \) then \(y \) in \(B \)” is a relation \(R \) between \(A \) and \(B \)
- Two model types
 - Implicative: \((x \text{ in } A \rightarrow y \text{ in } B)\) is an upper bound
 - Conjunctive: \((x \text{ in } A \land y \text{ in } B)\) is a lower bound
- Crisp motivation:
 \[
 \psi_A(x) \land \psi_B(y) \leq \psi_R(x,y) \leq (1 - \psi_A(x)) \lor \psi_B(y)
 \]
Rule application

- $R : U \times U \rightarrow [0, 1]$ is a rule
 - If $p(x)$ then $q(y)$
- Using a generalized Modus Ponens
 - A'
 - If A then B
 - B'
 - we get that
 - $I(q(y|x)) = \min(I(p(x)), R(x, y))$
Rough Sets

• Pawlak 1982

• Approximation of sets using a collection of sets.

• Related to fuzzy sets (Zadeh 1965), in that both can be viewed as representations of uncertainty regarding set membership.
Rough Set: Set Approximation

C₁

C₂

C₃

C₄
Rough Set: Set Approximation

\[\begin{align*}
 C_1 & \quad \quad C_2 & \quad C_3 & \quad C_4 \\
 D & \quad & & &
\end{align*} \]
Rough Set: Set Approximation

- Approximation of D by $\{C_1, C_2, C_3, C_4\}$:
 - C_1 definitely outside
 - C_3 definitely inside: lower approximation
 - $C_2 \cup C_4$ are boundary
 - $C_2 \cup C_3 \cup C_4$ are upper approximation
Rough Set: Set Approximation

• Given a collection of sets $C = \{C_1, C_2, C_3, \ldots\}$ and a set D, we define:

 – **Lower approximation** of D by C,

 $$D^L = YC_i \text{ such that } C_i \cap D = C_i$$

 – **Upper approximation** of D by C,

 $$D^U = YC_i \text{ such that } C_i \cap D \neq \emptyset$$

 – **Boundary** of D by C,

 $$D^U_L = D^U - D^L$$
Rough Set: Definition

• A set D is *rough* with respect to a collection of sets C if it has a non-empty boundary when approximated by C. Otherwise it is *crisp*.
Rough Set: Information System

- Universe U of elements, e.g., patients.
- Set A of features (attributes), functions f from U to some set of values V_f.
- (U,A) – information system

<table>
<thead>
<tr>
<th>Object no.</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[U = \{1,2,3,4,5,6,7,8,9\} \]
\[A = \{a,b,c,d\} \]
\[V_a = V_b = V_c = V_d = \{0,1\} \]
Rough Sets: Partition of U

- \(E = \{(i,j) \in U \times U \mid abc(i) = abc(j)\} \), equivalence relation on \(U \)
- \(E(1) = \{1\} = C_1 \)
- \(E(2) = E(3) = E(4) = \{2,3,4\} = C_2 \)
- \(E(5) = E(6) = \{5,6\} = C_3 \)
- \(E(7) = E(8) = E(9) = \{7,8,9\} = C_4 \)

<table>
<thead>
<tr>
<th>Object no.</th>
<th>abc</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0,0,1)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(0,1,1)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(0,1,1)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>(0,1,1)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(1,0,0)</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>(1,0,0)</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>(1,1,0)</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>(1,1,0)</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>(1,1,0)</td>
<td>0</td>
</tr>
</tbody>
</table>
Rough Sets: Approximating D

$D^U = \{2,3,4,5,6,7,8,9\} = C_2 \cup C_3 \cup C_4$

$D_L = \{5,6\} = C_3$

$D^U - D_L = \{2,3,4,7,8,9\} = C_2 \cup C_4$
Rough Sets: Approximate membership δ

$$\delta(i) = \frac{|D \cap E(i)|}{|E(i)|}$$

- $\delta(1) = 0$
- $\delta(2) = \delta(3) = \delta(4) = 1/3$
- $\delta(5) = \delta(6) = 1$
- $\delta(7) = \delta(8) = \delta(9) = 2/3$
Rough Sets: Data Compression

Information: Partition given by equivalence. Find minimal sets of features that preserve information in table.

<table>
<thead>
<tr>
<th>Object no.</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object no.</th>
<th>a</th>
<th>b</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Rough Sets: Discernibility Matrix

- $M_A = \{m_{ij}\}, A = \{a,b,c\}$
- $m_{ij} = \{a \in A | a(k) \neq a(l), k \in C_i, l \in C_j\}$

$$M_A = \begin{array}{|c|c|c|c|}
\hline
\{\} & \{b\} & \{a,c\} & \{a,b,c\} \\
\{b\} & \{\} & \{a,b,c\} & \{a,c\} \\
\{a,c\} & \{a,b,c\} & \{\} & \{b\} \\
\{a,b,c\} & \{a,c\} & \{b\} & \{\} \\
\hline
\end{array}$$

$C = \{\{b\}, \{a,c\}\{a,b,c\}\}$ – set of non-empty entries of M_A

Minimal sets that have non-empty intersection with all elements of C are $\{a,b\}$ and $\{b,c\}$ (Finding: Combinatorial)

These are called reducts of (U,A)

A reduct is a minimal set of features that preserves the partition.
Rough Sets: Extending δ

- Problem: we only have the δ value for 4 of 8 possible input values. What is $\delta(1,1,1)$?
- By using compressed data that preserves the partition, we cover more of the feature space. All of it in this case. $\delta(1,1,1) = \delta(1,1) = 2/3.$

<table>
<thead>
<tr>
<th>abc</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,1)</td>
<td>0</td>
</tr>
<tr>
<td>(0,1,1)</td>
<td>1/3</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>1</td>
</tr>
<tr>
<td>(1,1,0)</td>
<td>2/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ab</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>0</td>
</tr>
<tr>
<td>(0,1)</td>
<td>1/3</td>
</tr>
<tr>
<td>(1,0)</td>
<td>1</td>
</tr>
<tr>
<td>(1,1)</td>
<td>2/3</td>
</tr>
</tbody>
</table>
Rough Sets: Extending δ

- Problem: extension not unique (and can extend to different parts of feature space).
- $\delta(1,1,1) = \delta(1,1) = 1/3$.
- Possible solution: generate several extensions and combine by voting. Generating all extensions is combinatorial.
- $\delta(1,1,1) = (2/3 + 1/3)/2 = 1/2$

<table>
<thead>
<tr>
<th>abc</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,1)</td>
<td>0</td>
</tr>
<tr>
<td>(0,1,1)</td>
<td>1/3</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>1</td>
</tr>
<tr>
<td>(1,1,0)</td>
<td>2/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bc</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>1</td>
</tr>
<tr>
<td>(0,1)</td>
<td>0</td>
</tr>
<tr>
<td>(1,0)</td>
<td>2/3</td>
</tr>
<tr>
<td>(1,1)</td>
<td>1/3</td>
</tr>
</tbody>
</table>
Rough Sets: Classification rules

Rules with right hand side support numbers:

a(0) AND b(0) => d(0)	(1)
a(0) AND b(1) => d(1) OR d(0)	(1, 2)
a(1) AND b(0) => d(1)	(2)
a(1) AND b(1) => d(1) OR d(0)	(2, 1)
A Proposal for Mining Fuzzy Rules

• Recipe:
 1. Create rough information system by fuzzy discretization of data
 2. Compute rough decision rules
 3. Interpret rules as fuzzy rules
Fuzzy Discretization

• A_1, A_2, \ldots, A_n are fuzzy sets in U
• $\text{disc}: U \rightarrow \{1,2,\ldots,n\}$
 \[
 \text{disc}(x) = \{i \mid m_{A_i}(x) = \max\{m_{A_j}(x) \mid j \in \{1,2,\ldots,n\}\}\}
 \]
• disc selects the index of the fuzzy set that yields the maximal membership
• Information system: subject each attribute value to disc
Fuzzy Rough Rules: Example

\[A_1(3.14) = 0.6 \]
\[A_1(0.1) = 0.3 \]
\[A_2(3.14) = 0.5 \]
\[A_2(0.1) = 0.8 \]

<table>
<thead>
<tr>
<th>Object no.</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.14</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object no.</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

if A1 then d=0
if A2 then d=1
Uncertainty

- Fuzzy sets can be said to model inherent vagueness
 Bob is "tall" - vagueness in the meaning of "tall", not in Bob's height
- Rough sets can be said to model ambiguity due to lack of information
And...

- Thank you for your attention