Overview

- Fuzzy sets
- Fuzzy logic and rules
- Rough sets and rules
- An example of a method for mining rough/fuzzy rules
- Uncertainty revisited

Crisp Sets

- A set with a characteristic function is called *crisp*
- Crisp sets are used to formally characterize a *concept*, e.g., even numbers
- Crisp sets have clear cut boundaries, hence do not reflect uncertainty about membership

Fuzzy Sets

- Zadeh (1965) introduced “Fuzzy Sets” where he replaced the characteristic function with membership
- \(\psi_S : U \to \{0,1\} \) is replaced by \(m_S : U \to [0,1] \)
- Membership is a generalization of characteristic function and gives a “degree of membership”
- Successful applications in control theoretic settings (appliances, gearbox)

Fuzzy Sets

- Example: Let \(S \) be the set of people of normal height
- Normality is clearly not a crisp concept

Crisp Characterizations of Fuzzy Sets

- Support in \(U \)
 \[\text{Support}_U(S) = \{x \in U \mid m_S(x) > 0\} \]
- Containment
 \(A \subseteq B \) if and only if
 \(m_A(x) \leq m_B(x) \) for all \(x \in U \)
- There are non-crisp versions of the above
Fuzzy Set Operations

- **Union**
 \[m_{A \cup B}(x) = \max(m_A(x), m_B(x)) \]
- **Intersection**
 \[m_{A \cap B}(x) = \min(m_A(x), m_B(x)) \]
- **Complementation**
 \[m_{U-A}(x) = 1 - m_A(x) \]
- Note that other definitions exist too.

Fuzzy Memberships

Example

Fuzzy Union Example

\[m_{A \cup B}(x) \]

\[m_A(x) \]

\[m_B(x) \]

Fuzzy Intersection Example

\[m_{A \cap B}(x) \]

\[m_A(x) \]

\[m_B(x) \]

Fuzzy Complementation Example

\[m_{U-A}(x) \]

\[m_A(x) \]

\[I \]

\[m_U(x) \]

\[m_A(x) \]

Fuzzy Relations

- The fuzzy relation \(R \) between Sets \(X \) and \(Y \) is a fuzzy set in the Cartesian product \(X \times Y \).
- \(m_R: X \times Y \to [0,1] \) gives the degree to which \(x \) and \(y \) are related to each other in \(R \).
Composition of Relations

- Two fuzzy relations R in $X \times Y$ and S in $Y \times Z$ can be composed into $R \circ S$ in $X \times Z$ as

$$m_{R \circ S}(x, z) = \max_{y \in Y} \min[m_R(x, y), m_S(x, y)]$$

Composition Example

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>$R \circ S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Probabilities of Fuzzy Events

- “Probability of cold weather tomorrow”
- $U = \{x_1, x_2, \ldots, x_n\}$, p is a probability density, A is a fuzzy set (event) in U

$$P(A) = \sum_{i=1}^{n} m_A(x_i) p(x_i)$$

Defuzzyfication

- Finding a single representative for a fuzzy set A in $U = \{x_i | i \in \{1, \ldots, n\}\}$
- Max: x in U such that $m_A(x)$ is maximal
- Center of gravity:

$$\frac{\sum_{i=1}^{n} x_i m_A(x_i)}{\sum_{i=1}^{n} m_A(x_i)}$$

Alpha Cuts

- A is a fuzzy set in U
- $A_\alpha = \{x | m_A(x) \geq \alpha\}$ is the α-cut of A in U
- **Strong** α-cut is $A_\alpha = \{x | m_A(x) > \alpha\}$
- Alpha cuts are crisp sets

Fuzzy Logic

- Different views
 - Foundation for reasoning based on uncertain statements
 - Foundation for reasoning based on uncertain statements where fuzzy set theoretic tools are used (original Zadeh)
 - As a multivalued logic with operations chosen in a special way that has some fuzzy interpretation
Fuzzy Logic

- Generalization of proposition over a set
- Let $\chi_S: U \to \{0,1\}$ denote the characteristic function of the set S
- Recall that in “crisp” logic
 $I(p(x)) = p(x) = \chi_{T(p)}(x)$
 where p is a proposition and $T(p)$ is the corresponding truth set

Fuzzy Logic Semantics

- Basic operations:
 - $I(p(x)) = p(x)$
 - $I(\alpha \lor \beta) = \max(I(\alpha),I(\beta))$
 - $I(\alpha \land \beta) = \min(I(\alpha),I(\beta))$
 - $I(\neg \alpha) = 1 - I(\alpha)$

Fuzzy Rules

- “If x in A then y in B” is a relation R between A and B
- Two model types
 - Implicative: $(x$ in A \rightarrow y in B) is an upper bound
 - Conjunctive: $(x$ in A \land y in B) is a lower bound
 - Crisp motivation:
 $\psi_A(x) \land \psi_B(y) \leq \psi_R(x,y) \leq (1 - \psi_A(x)) \lor \psi_B(y)$

Rule application

- $R: U \times U \to [0,1]$ is a rule
 If $p(x)$ then $q(y)$
 Using a generalized Modus Ponens
 A'
 If A then B
 B'
 we get that
 $I(q(y|x)) = \min(I(p(x)),R(x,y))$
Rough Sets

- Pawlak 1982
- Approximation of sets using a collection of sets.
- Related to fuzzy sets (Zadeh 1965), in that both can be viewed as representations of uncertainty regarding set membership.

Rough Set: Set Approximation

- Approximation of \(D \) by \(\{C_1, C_2, C_3, C_4\} \):
 - \(C_1 \) definitely outside
 - \(C_3 \) definitely inside: lower approximation
 - \(C_2 \cup C_4 \) are boundary
 - \(C_2 \cup C_3 \cup C_4 \) are upper approximation

Rough Set: Definition

- A set \(D \) is rough with respect to a collection of sets \(C \) if it has a non-empty boundary when approximated by \(C \). Otherwise it is crisp.
Rough Set: Information System

- Universe U of elements, e.g., patients.
- Set A of features (attributes), functions f from U to some set of values V_f.
- (U, A) – information system

Object no. abcd

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$U = \{1,2,3,4,5,6,7,8,9\}$
$A = \{a,b,c,d\}$
$V_a = V_b = V_c = V_d = \{0,1\}$

Rough Sets: Partition of U

- $E = \{(i,j) \in U \times U | abc(i) = abc(j)\}$, equivalence relation on U
- $E(1) = \{1\} = C_1$
- $E(2) = E(3) = E(4) = \{2,3,4\} = C_2$
- $E(5) = E(6) = \{5,6\} = C_3$
- $E(7) = E(8) = E(9) = \{7,8,9\} = C_4$

Rough Sets: Approximating D

- $D' = \{2,3,4,5,6,7,8,9\} = C_2 \cup C_3 \cup C_4$
- $D_L = \{5,6\} = C_3$
- $D' - D_L = \{2,3,4,7,8,9\} = C_2 \cup C_4$

Rough Sets: Approximate membership δ

- $\delta(1) = 0$
- $\delta(2) = \delta(3) = \delta(4) = 1/3$
- $\delta(5) = \delta(6) = 1$
- $\delta(7) = \delta(8) = \delta(9) = 2/3$

Rough Sets: Discernibility Matrix

- $M_A = \{m_{ij}\}$, $A = \{a,b,c\}$
- $m_{ij} = \{a \in A | a(k) = a(l), k \in C_i, l \in C_j\}$

$C = \{(b),(a,c),(a,b,c)\}$ – set of non-empty entries of M_A
Minimal sets that have non-empty intersection with all elements of C are (a,b) and (b,c) (Finding: Combinatorial)
These are called reducts of (U,A)
A reduct is a minimal set of features that preserves the partition.
Rough Sets: Extending δ

- Problem: we only have the δ value for 4 of 8 possible input values. What is $\delta(1,1,1)$?
- By using compressed data that preserves the partition, we cover more of the feature space. All of it in this case. $\delta(1,1,1) = \delta(1,1) = 2/3$.

- Problem: extension not unique (and can extend to different parts of feature space).
- $\delta(1,1,1) = \delta(1,1) = 1/3$.
- Possible solution: generate several extensions and combine by voting. Generating all extensions is combinatorial.
- $\delta(1,1,1) = (2/3 + 1/3)/2 = 1/2$

Rough Sets: Classification rules

<table>
<thead>
<tr>
<th>Object no.</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rules with right hand side support numbers:
- $a(0) \text{ AND } b(0) \implies d(0)$
- $a(1) \text{ AND } b(1) \implies d(1) \lor d(0)$
- $a(1) \text{ AND } b(0) \implies d(1)$
- $a(1) \text{ AND } b(1) \implies d(1) \lor d(0)$

A Proposal for Mining Fuzzy Rules

- Recipe:
 1. Create rough information system by fuzzy discretization of data
 2. Compute rough decision rules
 3. Interpret rules as fuzzy rules

Fuzzy Discretization

- $A_1, A_2, ..., A_n$ are fuzzy sets in U
- $\text{disc}: U \rightarrow \{1,2,\ldots,n\}$
 - $\text{disc}(x) = \{i \mid m_{A_i}(x) = \max\{m_{A_j}(x) \mid j \in \{1,2,\ldots,n\}\}$
- disc selects the index of the fuzzy set that yields the maximal membership
- Information system: subject each attribute value to disc

Fuzzy Rough Rules: Example

<table>
<thead>
<tr>
<th>Object no.</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.14</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>

if A_1 then $d=0$
if A_2 then $d=1$
Uncertainty

- Fuzzy sets can be said to model inherent vagueness
 Bob is "tall" - vagueness in the meaning of "tall", not in Bob's height
- Rough sets can be said to model ambiguity due to lack of information

And...

- Thank you for your attention